

JOURNAL OF APPLIED ENGINEERING & TECHNOLOGY VOL. 7 NO. 2 (2023) 70-82

JAET

Journal homepage: http://jae-tech.com

Journal of

Applied

Engineering &

Technology

 ISSN : 2523-6032 ISSN-L : 2523-2924

*Corresponding author: engr.fq@gmail.com 70

Improving Round Robin Scheduling with Dynamic Time

Quantum (IRRDQ)

Farheen Qazi1*, Dur-e-Shawar Agha1, Muhammad Naseem1, Shahnila Badar2, Fozia Hanif

Khan3

1 Department of Software Engineering, Sir Syed University of Engineering and Technology, Karachi,

7500, Pakistan.
2 Department of Electrical Engineering, DHA Suffa University, Karachi, 75500, Pakistan
3 Department of Mathematics, University of Karachi, Karachi, 75270, Pakistan

*Corresponding Author

DOI: https://doi.org/10.55447/jaet.07.02.115

1. Introduction

CPU scheduling is the most vital task performed by an operating system [1], [2]. Scheduling is also

called the heart of a computer system; it deals with the allocation of resources of computers among

Abstract: In the realm of real-time and multitasking environments, the Round Robin (RR) CPU

scheduling algorithm is extensively utilized. Renowned for its fairness and avoidance of process

starvation, RR allocates a specific time quantum to each process. However, the frequent context

switching between processes during CPU scheduling, owing to the short time quantum, can

adversely impact system performance by increasing average waiting time and response waiting

time. To address these concerns, this paper introduces "Improving Round Robin Scheduling

Using Dynamic Time Quantum (IRRDQ)," a modified version of RR aimed at diminishing

turnaround time, average waiting time, and context switching. In our proposed approach, we

arrange all incoming processes based on minimum burst time and dynamically assign an optimal

time quantum to each process using the Shortest Job First (SJF) algorithm. The computation of

time quantum is tailored to the burst times of individual processes. Through experimental

demonstrations, we showcase the significant performance improvement of our algorithm

compared to RR and other existing algorithms.

Graphical Abstract:

Keywords: Round Robin (RR), Context switching, Average waiting time, Average turnaround time, Shortest Job

First (SJF).

http://jae-tech.com/
https://doi.org/10.55447/jaet.07.02.115

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 71

multiple processes. For the execution of any process, a set of resources are required that are allocated

to it by the CPU. Numerous processes are arriving in the specified manner, and various scheduling

techniques are implemented to enhance execution efficiency, reduce waiting time and turnaround

time, while maximizing CPU utilization. A process can exist in one of five fundamental states: new,

ready, running, waiting (blocked), and exit. A process migrates throughout its lifespan between

different scheduling queues by different schedulers until it gets terminated. These scheduling queues

are:

1.1 Ready Queue

All the ready processes to execute are placed in this queue and waiting for the response of the

CPU.

1.2 Input/output Queue

This queue contains all the processes waiting for an I/O response. The processes must be selected for

scheduling in a definite manner by operating the system from the queues mentioned above.

Scheduling algorithms are classified into two broad categories [3]:

 Preemptive

 Non-Preemptive

2. CPU Performance Parameters

Various criteria can measure the performance of the CPU scheduling algorithms. The main goal of any

scheduling algorithm is to meet the following criteria [4]:

2.1 CPU Utilization

It is the mediocre division of time. The range of CPU utilization is from 0 to 100. During the

execution of processes, the CPU is not free; the processor is as busy as possible.

2.2 Throughput

The amount of work the CPU does in a unit of time (period). The higher the number of processes

entertained by the system, the more work is done by the system.

2.3 Waiting Time

Refers to the process which waits in the ready queue, not the time required for process execution or

I/O completion. The process is waiting to be assigned to the CPU.

2.4 Turnaround Time

It is also called the over-all time of a process. It is the intermission between the submission time of a

process to the completion time of that process.

2.5 Response Time

This time of the scheduling should be low. It is the first response time of the request from the time

of submission.

2.6 Fairness

Make sure that all the processes share the CPU equally; no process is in a state of starvation. Provide

an equal opportunity for the execution of all processes.

3. Existing CPU Scheduling Algorithms

CPU scheduling has four popular algorithms. These algorithms choose which process is allocated to

the CPU from the ready queue. Each algorithm has its pros and cons. The algorithms for CPU

scheduling are as follows:

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 72

3.1 First Come, First Serve (FCFS)

The algorithm is based on the FIFO (First in First Out) queue rule. The allocation of processes to the

CPU is according to the arrival of processes which are waiting in ready queue. Once the CPU is

allocated to the process, it removes from the ready queue. It never gives up until and unless the

process has completed all of its activities or execution because this algorithm is non-preemptive.

3.2 Shortest Job First (SJF)

The algorithm is based on the length of the CPU burst or execution time. CPU allocation to the

processes concerning the shortest burst time. If two or more processes have same burst time, then the

FCFS algorithm will break the tie between them [5]. The SJF algorithm is categorized into two

different schemes:

3.2.1 SJF Preemptive

When a process currently running on the CPU and interrupted by a new arriving process with less

CPU burst time, the currently running process returns to the ready queue, and the CPU entertains the

interrupted process.

3.2.2 SJF Non-Preemptive

This algorithm does not allow interruption in the running. Once the execution of a running process

is executed, the CPU will allocate to the next process.

3.3 Priority Scheduling (PS)

In the PS algorithm, processes are assigned CPU time based on their associated priority values. The

lowest numerical value corresponds to the highest priority, and the process with the maximum

priority is granted CPU allocation. In cases where two or more processes share the same priority, ties

are resolved using the FCFS algorithm.

3.4 Round Robin (RR)

The basic motive for designing RR is equal time sharing for all arrived processes. A defined time

quantum (small unit of time) is assigned to all processes. These processes are executed in FCFS

fashion with equal time distribution. If the cycle of processes concludes and certain processes still

have remaining burst time, the execution cycle is reiterated for all processes sharing the same time

quantum value until each process completes its execution [6].

4. Literature Review

In recent years, research has been performed on operating system CPU scheduling algorithms. These

works are the extension of already existing CPU scheduling algorithms. Authors have developed

their models in their articles. We have discussed some articles related to CPU scheduling algorithms

by different authors. The Round Robin Algorithm is rendered and the waiting time, turnaround time,

and number of context switches are reduced by the algorithm proposed in [7]. First, the mean of the

execution times of all the arrived processes is taken in order to calculate the time quantum. The

procedures are then carried out. It recalculates the time quantum for those processes with remaining

burst time if some processes execute their burst time completely. In [8], the author first arranges all

of the processes in ascending manner and then uses the first cycle's execution time as a time quantum.

Rearranged all the processes in ascending order, following the completion of the first cycle, which

results in a new time quantum for the processes' remaining execution time. Because of this

calculation, they secure improved results than the first Cooperative Calculation. An improved Round

Robin algorithm known as ERRBTQ (Enhanced Round Robbin with Burst-Time Based Time

Quantum) was proposed by the authors in this study [9]. After determining the median of each

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 73

process' burst time, time quantum is used to carry out the processes; It will execute the same process

if any of the processes run and the remaining burst time is less than the time quantum. In the Modulo-

Based Round Robin Algorithm [10], an ideal approach to ranking processes and locating the time

quantum was proposed. The time quantum is the average of all the execution times for the given

processes. Taking each process's modulo with the calculated time quantum and giving priority to the

process with the smallest value; consequently, the turnaround time, average waiting time, and number

of context switches are reduced by this algorithm. For choosing or calculating a time quantum, the

modified Round Robin Algorithm [11] offers two distinct selection criteria. Calculate the average of

all the burst times if the number of processes are even, but if the number of processes is odd select

the quantum value as middle value. Each process with modified quantum time; It will carry out the

same procedure if the process's remaining burst time is less than the quantum time. Priority Based

Round Robin CPU Scheduling Using Dynamic Time Quantum [12] was the proposed method, which

eliminates the issue of context switches and speeds up turnaround and waiting times. Take the

average execution time of all the arrived processes to determine the dynamic time quantum. It

executes two of the processes with the highest and second highest priority out of all of them for the

calculated time quantum. Rehash these tasks till the finish of the execution season of the multitude

of cycles. In this paper proposed a precautionary and non-preplanned nature calculation [13].

Condition factor (f) is a new factor that is calculated by adding the arrival time and execution time

of the given processes in this algorithm. Each process is given this factor 'f,' which puts them in the

ready queue and arranges them in decreasing order based on the factor 'f.' The process with the

shortest value of the factor, "f," runs first, followed by the process with the next shortest value of the

factor. Throughput and CPU utilization are both increased, and waiting, turnaround, and response

times are reduced, by this algorithm. The round-robin algorithm was the focus in [14] there are three

stages to this algorithm. The process's execution time is determined by placing all values in ascending

order in the first stage. The last stage selects a process and assigns a quantum up to one smart time

quantum from the ready queue. The second stage than calculates the mean burst time of all given

processes. Continue the process that is currently running and compare burst time if value of burst

time is less than one; once the process is finished, it returns to stage three. Context switching, waiting

time, and turnaround time are also reduced by this algorithm. This paper proposed an efficient CPU

scheduling preemptive nature algorithm that places the processes in ascending order in a ready queue.

Every process is given a brief amount of time, or time quantum. The given time slice is followed by

each process as it executes; If a process's time slice has run out, it will be moved to the end of queue,

where the CPU will start the next process from the ready queue. The ready queue resembles a circular

queue in this scenario. This algorithm outperforms the current CPU scheduling algorithm in terms of

turnaround time and waiting time [15]. Another planning calculation, SJRR, was proposed by Rakesh

Patel. A preemptive and round-robin mechanism served as the foundation for this algorithm. They

arrange all of the processes according to minimum to maximum order of the burst time in a ready

queue in an effort to reduce both the average waiting time and the turnaround time. Time quantum

(TQ) is the process with the shortest burst time out of all of them [16]. Author introduced another

cooperative planning calculation called superior cooperative effort [17]. They organized every one

of the cycles in the rising request concerning the burst time and allocated an ideal time quantum to

the cycles. They came up with a method that helped cut down on waiting times, turnaround times,

and context switching.

5. Research Methodology

Our methodology is not to change the philosophy of the original Round Robin Algorithm; rather, we

have added two more steps to this algorithm to achieve better results than the original one. Our

proposed approach comprises Round Robin Algorithm (RR), Shortest Job First (SJF Non-

Preemptive), and dynamically calculated time quantum for RR. The proposed algorithm is

represented in Figure 1 and overall flow is represented in Figure 2.

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 74

In traditional Round robin processes are execute using First Come First Serve (FCFS) technique. In

our proposed algorithm we execute processes in Shortest Job First, i-e. the process which has least

execution time will execute first. Our proposed algorithm uses Dynamic Time Quantum which is

also used in Web Server Scheduling in the context of web servers, where multiple user requests

(processes) must be served concurrently, the IRRDQ principles have been applied in a practical

context. The dynamic adjustment of the time quantum in scheduling algorithms becomes crucial to

ensure efficient processing of user requests and optimal utilization of system resources. Let's consider

a case study where the IRRDQ principles are applied in web server scheduling.

Fig. 1 - Round Robin Using Dynamic Time Quantum

For scheduling Round Robin, our proposed algorithm (IRRDQ) is effective. We compare our newly

proposed algorithm to a few other algorithms that are already in use to determine its effectiveness

and efficiency, such as Self-Adjustment Time Quantum in Round Robin Algorithms (SARR) [19]

and SJRR CPU Scheduling Algorithm [16] are all variations of the round robin algorithm (RR). With

some parameters, we compare these algorithms. The process arrangement, time quantum evaluation

method or procedure, waiting time, and turnaround time are all compared in Table 1. We played out

some experiments for trial results displayed in segments 6.1, 6.2, and 6.3.

5.1 Assumptions

 In our proposed algorithm, we assume the following points:

 We consider an empty ready queue at the beginning.

 All arrived processes are presumed to have a uniform arrival time, set at Zero (0).

 All the arrived processes have their respective burst time.

5.2 Input

 All the processes which we want to execute.

 Every incoming process is associated with a specific burst time.

5.3 Output

 Dynamic Time Quantum (TimeQ) / Time Slice.

 Average Waiting Time.

 Average Turnaround Time.

 The number of Context Switches.

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 75

Fig. 2 - Flow Chart of Proposed Algorithm

Algorithm : IRRDQ (proposed algorithm)

1 While(Ready Queue != Null)

2

3

 Sort all the processes with respect to the shortest job first (SJF)

Calculate Mean from step 2

 4 Calculate the Combine Time (C.T = Highest Burst Time + Lowest Burst Time)

5

6

6

 Calculate Time Quantum = TimeQ (TimeQ = square root (Mean+C.T))

Assign TimeQ to each process:

 P[j] TimeQ

Take next round for the remaining burst time (B.T) of the processes

7

8

9

10

11

if (new process arrived and B.T != Null)

Move toward step 5,

else if (no new process arrived and B.T != 0)

End if

end

12 End While

Begin

Arrange all the

processes with

respect to

Shortest Job

Ready

Queue

 != Null

Time Quantum =

TimeQ

Pj TimeQ

New

process

arrived

No new

process

arrived

and B.T

End

Calculate A.W.T,

A.T.A.T and CS

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 76

5.4 Parameters of Proposed Algorithms

5.4.1 Combine Time (C.T)

The Combine Time (C.T) is calculated by finding the sum of the highest burst time and the lowest

burst time among a set of processes in a multitasking or multiprocessing environment. In a

multitasking system, processes are typically assigned burst times, which represent the amount of time

it takes for a process to execute without being interrupted. The highest burst time refers to the process

with the longest execution time, while the lowest burst time refers to the process with the shortest

execution time. The Combine Time is used in various scheduling algorithms to make decisions about

the order in which processes are executed. By adding the highest burst time and the lowest burst time,

the system can get a sense of the range of execution times among the processes, which can help in

making efficient scheduling decisions.

5.4.2 Time Quantum (TimeQ)

To calculate the Time Quantum (TimeQ) using the formula TimeQ = √(Mean + C.T), the following

steps can be followed:

The mean (average burst time) of the processes is calculated by summing up all the burst times and

then dividing by the number of processes.

As mentioned earlier, the Combine Time (C.T) is computed by adding the highest burst time and the

lowest burst time among a set of processes. Once the Mean and C.T values are obtained, substitute

them into the formula TimeQ = √(Mean + C.T).

Table 1 - Parameters Comparison for Algorithms

Parameters

Algorithms

Arrangement of

Processes

Time Quantum Waiting Time Turnaround Time

IRRDQ Arrange all the

processes into first

come first serve

(FCFS) order

TimeQ = TCMean .

*Mean= BurstTime (all

arrived processes)

*C.T=Highest Burst Time +

Lowest Burst Time

Waiting Time = Start

Time – Arrival Time

IRRDQ < RR, IRR,

SARR, SJRR

Turnaround Time = Waiting

Time + Burst Time

IRRDQ < RR, IRR, SARR,

SJRR

RR Arrange all the

processes into first

come first serve

(FCFS) order

TQ = Random Value Waiting Time = Start

Time – Arrival Time

RR > IRRDQ, IRR,

SARR, SJRR

Turnaround Time = Waiting

Time + Burst Time

RR > IRRDQ, IRR, SARR,

SJRR

IRR Arrange all the

processes into first

come first serve

(FCFS) order

TQ = Random Value

(If a process is executed following

the time quantum (TQ), and the

remaining burst time of the same

process is less than the TQ value,

the CPU will execute the same

process again)

Waiting Time = Start

Time – Arrival Time

IRR < RR, SARR,

SJRR

Turnaround Time = Waiting

Time + Burst Time

IRR < RR, SARR, SJRR

SARR Organize the

provided processes

in ascending order

based on their

Burst Time.

TQ = Median

(Determine the median value from

the burst times of the processes

that have arrived)

Waiting Time = Start

Time – Arrival Time

SARR < RR, SJRR

Turnaround Time = Waiting

Time + Burst Time

SARR < RR, SJRR

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 77

6. Results and Discussion

We have analyzed our proposed IRRDQ algorithm against RR, IRR [18], SARR [19], SJRR [16],

and ARRS [20]. The outcomes of our algorithm were compared with those of the existing Round

Robin (RR), Improved Round Robin (IRR), Self-adjustment Round Robin, and SJRR in each of the

three scenarios. For RR, IRR, and ARRS algorithms, a fixed (static) time quantum (TQ) of 40 was

utilized. SJRR determines the quantum time by selecting the shortest burst time, while SARR uses

the median of processes' burst times as the time quantum (TQ).

Case 1: CPU Burst Time According to Shortest Burst Time - Let's consider the system currently

having five processes (P1, P2, P3, P4, and P5) with arrival time = 0 (zero) and burst time (27, 54, 79,

93, and 140), as shown in Tables 2 and 3. The output of case 1 algorithms is shown in Fig. 3 and 4

in the form of Gantt charts.

Table 2 - Input Data (Case 1)

Table 3 - Algorithms Comparison (Case 1)

SJRR Sort the given

processes in

ascending order

based on their

Burst Time.

TQ = Value of smallest burst time

process

Waiting Time = Start

Time – Arrival Time

SJRR < RR

Turnaround Time = Waiting

Time + Burst Time

SJRR < RR

ARRS Arrange all the

processes into first

come first serve

(FCFS) order

TQ = Random Value

(abs(BT[i] - TQ) <= (TSH× TQ))

(This algorithm employs a

specified threshold value and

conducts a comparison based on a

given formula. If the condition

evaluates as true, the quantum is

set equal to the burst time of the

desired process; otherwise, it

adopts a randomly generated

quantum value)

Waiting Time = Start

Time – Arrival Time

ARRS < RR, SJRR

Turnaround Time = Waiting

Time + Burst Time

ARRS < RR, SJRR

Process # Arrival

Time

Burst

Time

P1 0 27

P2 0 54

P3 0 79

P4 0 93

P5 0 140

Algorithms Time

Quantum

(TQ)

Average

Waiting

Time

(A.W.T)

Average

Turnaround

Time

(A.T.A.T)

Context

Switching

(C.S)

IRRDQ 114 104.2 182.8 5

RR 40 218.2 296.8 11

IRR 40 112.2 190.8 7

SARR 79 120 198.6 7

SJRR 27 158.2 231.4 13

ARRS 40 136.2 214.8 9

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 78

Fig. 3 - Gantt Charts of Case-01 Algorithms

Fig. 4 - Comparison between Quantum Time, Avg. Waiting Time and Avg. Turnaround Time

and Context Switching of Case 1 Algorithms

Case 2: CPU Burst Time According to Highest Burst Time - Let's consider the system currently

having five processes (P1, P2, P3, P4, and P5) with arrival time = 0 (zero) and burst time (140, 93, 79.

54, and 27), as shown in Tables 4 and 5. The output of case 2 algorithms is shown in Fig. 5 and 6 in

the form of Gantt charts.

Table 4 - Input Data (Case 2)

Process # Arrival Time Burst Time

P1 0 140

P2 0 93

P3 0 79

P4 0 54

P5 0 27

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 79

Table 5 - Algorithms Comparison (Case 2)

Fig. 5- Gantt Charts of Case-02 Algorithm

Fig. 6 - Comparison between Quantum Time, Avg. Waiting Time and Avg. Turnaround Time

and Context Switching of Case 2 Algorithms

0

50

100

150

200

250

300

350

IRRDQ RR IRR SARR SJRR ARRS

Case-02 : Comparison Chart

Time Quantum (TQ) Average Waiting Time (A.W.T)

Average Turnaround Time (A.T.A.T) Context Switching (C.S)

Algorithms Time

Quantum

(TQ)

Average

Waiting

Time

(A.W.T)

Average

Turnaround

Time

(A.T.A.T)

Context

Switching

(C.S)

IRRDQ 114 104.2 182.8 5

RR 40 237.2 315.8 12

IRR 40 189 267 8

SARR 79 245 323.6 7

SJRR 27 163.6 242.2 13

ARRS 40 213.6 292.2 10

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 80

Case 3: CPU Burst Time in Random Order - Let's consider the system currently having five processes

(P1, P2, P3, P4, and P5) with arrival time = 0 (zero) and burst time (93, 140, 79. 27, and 54) as shown

in Tables 6 and 7. The output of case 3 algorithms is shown in Figure 7 and 8 in the form of Gantt

charts.

Table 6 - Input Data (Case 3) Table 7 - Algorithms Comparison (Case 3)

Process # Arrival Time Burst Time

P1 0 93

P2 0 140

P3 0 79

P4 0 27

P5 0 54

Fig. 7 - Gantt Charts of Case 3 Algorithms

Fig. 8 - Comparison between Quantum Time, Avg. Waiting Time and Avg. Turnaround Time

 and Context Switching of Case 3 Algorithms

0

50

100

150

200

250

300

350

IRRDQ RR IRR SARR SJRR ARRS

Case-03 : Comparison Chart

Time Quantum (TQ) Average Waiting Time (A.W.T)

Average Turnaround Time (A.T.A.T) Context Switching (C.S)

Algorithms Time

Quantum

(TQ)

Average

Waiting

Time

(A.W.T)

Average

Turnaround

Time

(A.T.A.T)

Context

Switching

(C.S)

IRRDQ 114 104.2 182.8 5

RR 40 221.2 299.8 11

IRR 40 175.6 254.2 8

SARR 79 230 308.6 7

SJRR 27 158.2 236.8 13

ARRS 40 200.2 278.8 9

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 81

7. Conclusion

The presented exploratory results highlight the advanced performance of the IRRDQ algorithm in

comparison to conventional Cooperative effort (R.R.) Calculation, Enhanced Cooperative effort

(IRR) Calculation, SJRR microprocessor Planning Calculation, Self-Adjusting Time Quantum in

Round Robin (SARR), and Adjustable Round Robin Scheduling Algorithm (ARRS) Calculation.

Three distinct cases discussed in the experimental findings all demonstrate that IRRDQ meets

optimization criteria by achieving the shortest possible waiting time (Avg. W.T.), minimizing

turnaround time (Avg. T.A.T.), and minimizing context switches (C.S.). Using the proposed

algorithm as a foundation, potential future improvements can be explored.

8. Future Enhancement

Research and improvements on the proposed IRRDQ process scheduling algorithm is possible in

many ways, if we investigate methods to dynamically adjust the priorities of processes in real-time

based on their resource needs and system conditions. This could include incorporating feedback

mechanisms that adaptively modify process priorities to ensure fair and efficient resource utilization.

Also consider optimizing the interprocess communication mechanism in the IRRDQ algorithm. This

could involve developing more efficient protocols or exploring advanced communication techniques,

such as shared memory or event-driven architectures, to minimize overhead and improve overall

system performance. Integration with energy-aware scheduling: Explore the integration of energy-

aware scheduling techniques into the IRRDQ algorithm. This could involve considering energy

consumption as an additional parameter in the scheduling decisions to promote energy-efficient

resource utilization and prolong the battery life of mobile devices. With further research and

experimentation, there is great potential for refining and expanding the IRRDQ process scheduling

algorithm to meet the evolving needs of complex computing systems.

References

[1]. Silber Schatz, Galvin and Gagne, Operating systems concepts, 9th ed. Wiley, 2018.

[2]. Mutlag, A. A., Abd Ghani, M. K., Mohammed, M. A., Lakhan, A., Mohd, O., Abdulkareem,

K. H., & Garcia-Zapirain, B. (2021). Multi-agent systems in fog–cloud computing for critical

healthcare task management model (CHTM) used for ECG monitoring. Sensors, 21(20),

6923.

[3]. Harki, N., Ahmed, A., & Haji, L. (2020). CPU scheduling techniques: A review on novel

approaches strategy and performance assessment. Journal of Applied Science and Technology

Trends, 1(2), 48-55.

[4]. Zouaoui, S., Boussaid, L., & Mtibaa, A. (2019). Priority based round robin (PBRR) CPU

scheduling algorithm. International Journal of Electrical & Computer Engineering (2088-

8708), 9(1).

[5]. Harki, N., Ahmed, A., & Haji, L. (2020). CPU scheduling techniques: A review on novel

approaches strategy and performance assessment. Journal of Applied Science and Technology

Trends, 1(2), 48-55.

[6]. Anselmi, J. (2019). Combining size-based load balancing with round-robin for scalable low

latency. IEEE Transactions on Parallel and Distributed Systems, 31(4), 886-896.

[7]. Tajwar, M.M., Pathan, M.N., Hussaini, L. and Abubakar, A., “CPU scheduling with a round

robin algorithm based on an effective time slice”. Journal of Information processing systems,

vol. 13, no. 4, pp.941-950, 2017.

[8]. Nizam, F., Ahmed, S., Kumar, P., Tsetse, A., Kumar, R., Shanker, B., & Sohu, N. (2023). Enhancing Physical

Layer Security in MIMO Systems through Beamforming and Artificial Noise Techniques. Journal of

Independent Studies and Research Computing, 21(2), 20-24.
[9]. Berhanu, Y., Alemu, A. and Mishra, M.K., “Dynamic time quantum based round robin CPU

scheduling algorithm”. International Journal of Computer Applications, vol. 167, no. 13,

pp.48-55, 2017.

Farheen Qazi et al., J. of Applied Engineering and Technology. Vol. 7 No. 2 (2023) p. 70-82

 82

[10]. Mostafa, S. M., Idris, S. A., & Kaur, M. (2022). ATS: A Novel Time-Sharing CPU Scheduling

Algorithm Based on Features Similarities. Computers, Materials & Continua, 70(3).

[11]. Joshi, A. and Gosswami, S., Modified round robin algorithm by using priority scheduling.

Advances in Computational Sciences and technology, vol. 10, no. 6, pp.1543-1549, 2017.

[12]. Nabi, AA, Bablani, A., Ali, M., Tunio, FH, Mukhi, A., & Soho, NU (2023). The Adoption of RFID Technology

and Its Influence on Customer Satisfaction in Pakistan's Retail Industry: A Case Study of LuckyOne Mall.

Research Letters, 1(1), 27-34.
[13]. Mittal, N., Garg, K. and Ameria, A., “A paper on modified round robin algorithm”.

International Journal of Latest Technology in Engineering, Management & Applied Science,

vol. 4, no. 11, pp.93-98, 2015.

[14]. Siddiqui, M. M. A., Sohu, M. N. U., & Zardari, M. H. A. (2023). Cyber Security and quality education: Recent

Cyber-Attacks as a Challenge to National Economic Security. International Research Journal of Management

and Social Sciences, 4(1), 32-52.
[15]. Lulla, D., Tayade, J. and Mankar, V., “Priority based round robin cpu scheduling using

dynamic time quantum”. IJETT, vol. 2, no. 2, 2015.

[16]. Manwani, A., Dhirani, J., Baloch, A., & Wasan, R. H. (2022). Design of Voice-Controlled Robot

Vehicle. Journal of Applied Engineering & Technology (JAET), 6(1), 40-47.
[17]. Bandarupalli, S.B., Nutulapati, N.P. and Varma, P.S., “A Novel CPU Scheduling Algorithm–

Preemptive & Non-Preemptive”. International Journal of Modern Engineering Research

(IJMER), vol. 2, no. 6, pp.4484-4490, 2012.

[18]. Joshi, R. and Tyagi, S.B., “Smart optimized round robin (SORR) CPU scheduling algorithm”.

International Journal of Advanced Research in Computer Science and Software Engineering,

vol. 5, no. 7, pp.568-574, 2015.

[19]. Dewangan, B. K., Jain, A., & Choudhury, T. (2020). AP: Hybrid Task Scheduling Algorithm

for Cloud. Rev. d'Intelligence Artif., 34(4), 479-485.

[20]. Patel, R. and Patel, M., “SJRR CPU scheduling algorithm”. Int J Eng Comput Sci, 2, pp.3396-

3399, 2013.

[21]. Nayak, D., Malla, S.K. and Debadarshini, D., “Improved round robin scheduling using

dynamic time quantum”. International Journal of Computer Applications, vol. 38, no. 5,

pp.34-38.

[22]. Mishra, M.K., “An improved round robin CPU scheduling algorithm”. Journal of Global

Research in computer science, vol. 3, no. 6, pp.64-69, 2012.

[23]. Matarneh, R.J., 2009. Self-adjustment time quantum in round robin algorithm depending on

burst time of the now running processes. American Journal of Applied Sciences, vol. 6, no.

10, pp.1831-1837.

[24]. Mostafa, S., & Amano, H. (2019). An adjustable round robin scheduling algorithm in

interactive systems. Information Engineering Express, 5(1), 11-18.

